当前位置: 首页 > news >正文

状态空间模型与卡尔曼滤波

1.状态空间模型

状态空间模型 (State Space Model),包括两个方程模型:
一是状态方程模型,反映动态系统在输入变量作用下在某时刻所转移到的状态;
二是输出或测量方程模型,它将系统在某时刻的输出和系统的状态及输入变量联系起来。
在这里插入图片描述

状态空间模型求解算法的核心是Kalman滤波。

2.卡尔曼滤波

以前有一种状态估计方法称为维纳滤波,它在第二次世界大战期间得到了应用。其缺点在于:①必须使用全部的历史观测数据,存储量和计算量都很大;②当获得新的观测数据时,没有合适的递推算法;③很难用于非平稳过程的滤波问题。为克服上述缺点,在20世纪60年代初,美国数学家R.E.卡尔曼(R.E.Kalman)等人发展了一种递推滤波方法,即现称的卡尔曼滤波。

斯坦利·施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表。

Kalman滤波算法的本质就是利用两个正态分布的融合仍是正态分布这一特性进行迭代而已。比如两个秤去测量一个苹果的重量,每个秤的测量存在误差,是正态分布。两个秤就是两个正态分布。那么我们将两个秤的结果通过某种算法合并就能得到更真实的苹果重量,而不是相信其中一个秤。

在这里插入图片描述

卡尔曼滤波核心公式如下:

在这里插入图片描述

不考虑u及B时,简写为:
在这里插入图片描述

公式推导参见,【【卡尔曼滤波器】1_递归算法_Recursive Processing-哔哩哔哩】 https://b23.tv/XOOAYUK.

3.扩展卡尔曼滤波(EKF)

当状态方程和测量方程非线性方程时,就考虑扩展卡尔曼滤波。

对于非线性滤波,至今未得到完善的解法,通常的处理方法是利用线性化技巧将非线性滤波问题转化为一个近似的线性滤波问题,套用线性滤波理论得到求解原非线性滤波问题的次优滤波算法,其中最常用的线性化方法是泰勒级数展开,得到的滤波方法即为扩展卡尔曼滤波。对于二阶EKF,其滤波性能远比一阶的要好,但是二阶以上的效果提升就不明显了,所以一般就是用一阶、二阶,但是二阶计算量比较大,一般都用一阶的。
在这里插入图片描述

4.状态空间模型与ARMAX

1)每一个有外部变量的自回归移动平均系统(ARMAX)或可用有理传递函数表示的系统都可以转换成用状态空间表示的系统,从而能用卡尔曼滤波进行计算。但是只有简单的状态空间模型可以以ARIMA形式精确表示。
2)与ARIMA相比,状态空间模型使您可以对更复杂的流程进行建模,具有可解释的结构并轻松处理数据不规则性;但是为此,您需要付出的代价是增加模型的复杂性,更难进行校准。

5.Kalman与最小二乘法

最小二乘(Least Square)是优化方法中的一种特殊情况,而卡尔曼滤波又是最小二乘法的一种特殊情况。 古典最小二乘中,假设了每一次测量的权重相同,但事实上这样并不合理,后来演化为加权最小二乘法,至此最小二乘估计所做的都是批处理(Batch),这样比较占内存,不符合动态系统状态估计的需要,即每一次更新输入时,都要从新计算之前所有的记录值。而后,提出递推最小二乘法,模型就不用每次都重新计算了。与递归最小二乘相似,卡尔曼滤波加入了系统内部变化的考虑。即利用process model对系统在下一时刻的状态进行预测。
当对于系统不够了解时,使用最小二乘法比较合适,而对于系统了解比较多时,可以采用Kalman滤波。改变量测噪声、系统噪声都会对Kalman滤波的效果产生影响,而不会对最小二乘滤波产生影响,而改变最小二乘的阶数会对其产生影响.

6.Kalman与HMM

HMM 模型适用于隐变量是离散的值的时候,对于连续隐变量的 HMM,常用卡尔曼滤波(Kalman Filtering)描述线性高斯模型的状态变量,使用粒子滤波(Particle Filter)来表述非高斯非线性的状态变量。

《Advanced Digital Signal Processing and Noise Reduction 4th Edition》中的描述:
在这里插入图片描述

7.参考

1)部分公式来源于:【【卡尔曼滤波器】1_递归算法_Recursive Processing-哔哩哔哩】 https://b23.tv/XOOAYUK.
2)卡尔曼滤波(kalman)相关理论以及与HMM、最小二乘法关系https://blog.51cto.com/u_13206712/5839786
3)《Advanced Digital Signal Processing and Noise Reduction 4th Edition》

相关文章:

  • 【快速开始】vuejs环境搭建第一个项目
  • 聊聊关于矩阵反向传播的梯度计算
  • 测试岗外包4年终上岸,这段日子说起来都是泪啊
  • linux secure boot(安全启动)下为内核模块签名
  • 解决数据兼容性问题
  • myBaits Target Capture Kits;myBaits 靶向捕获试剂盒,快速捕获富集目标序列
  • 百度、字节终于不再相互“抄袭”
  • 20230202英语学习
  • TypeScript类
  • this作用全解(全局this 、函数this、全局函数 this call apply bind……)
  • k8s核心资源ingress
  • 【MySQL】《狂飙》电视剧火了,如果程序一直狂飙,扛不住了,怎么办呢?
  • golang 协程关闭——谁敢说没踩过坑
  • 熵值法原理及python实现 附指标编制案例
  • Small RTOS51 学习笔记(10)Small RTOS51 的移植
  • CentOS7 LVM 逻辑卷2种读写策略(磁盘IO性能优化)—— 筑梦之路
  • 湫湫系列故事——减肥记Ⅰ(Python)
  • 分享158个ASP源码,总有一款适合您
  • 机器学习常见面试问题汇总
  • 低代码:让企业“活”起来,赋能企业数字转型
  • 电加热油锅炉工作原理_电加热导油
  • 大型电蒸汽锅炉_工业电阻炉
  • 燃气蒸汽锅炉的分类_大连生物质蒸汽锅炉
  • 天津市维修锅炉_锅炉汽化处理方法
  • 蒸汽汽锅炉厂家_延安锅炉厂家
  • 山西热水锅炉厂家_酒店热水 锅炉
  • 蒸汽锅炉生产厂家_燃油蒸汽发生器
  • 燃煤锅炉烧热水_张家口 淘汰取缔燃煤锅炉
  • 生物质锅炉_炉
  • 锅炉天然气_天燃气热风炉